A computational model for assessing high-velocity debris impact in space applications
M Bergh and V Garcia, SHOCK WAVES, 27, 675-684 (2017).
DOI: 10.1007/s00193-017-0709-9
Man-made space debris is dominating the background meteorite environment with a growing debris population leading to increased collision risks for satellites, especially in the low Earth orbit and geostationary orbit protected environments. Here we present a computational model for estimating the effect of hypervelocity impact from debris particles on non-shielded propellant and pressurant tanks. Eulerian hydrocode simulation is utilised to model firstly penetration and shock wave formation in the propellant and secondly subsequent detonation wave propagation and interaction with the tank wall. Furthermore, reactive molecular dynamics is used to estimate the risk of detonation in a liquid hydrazine layer. We present simulations of a 3.5 mm aluminium spherical debris particle at a velocity of 14 km/s relative to a hydrazine tank. We find that the degree of damage is strongly dependent on tank temperature and hence on the satellite thermal configuration at its end of life.
Return to Publications page