Influence of polymer architectures on diffusion in unentangled polymer melts
A Chremos and C Jeong and JF Douglas, SOFT MATTER, 13, 5778-5784 (2017).
DOI: 10.1039/c7sm01018d
Recent simulations have indicated that the thermodynamic properties and the glassy dynamics of polymer melts are strongly influenced by the average molecular shape, as quantified by the radius of gyration tensor of the polymer molecules, and that the average molecular shape can be tuned by varying the molecular topology (e.g., ring, star, linear chain, etc.). In the present work, we investigate if the molecular shape is similarly a predominant factor in understanding the polymer center of mass diffusion D in the melt, as already established for polymer solutions. We find that all our D data for unentangled polymer melts having a range of topologies can be reasonably described as a power law of the polymer hydrodynamic radius, Rh. In particular, this scaling is similar to the scaling of D for a tracer sphere having a radius on the order of the chain radius of gyration, R-g. We conclude that the chain topology influences the molecular dynamics in as much as the polymer topology influences the average molecular shape. Experimental evidence seems to suggest that this situation is also true for entangled polymer melts.
Return to Publications page