Communication: Is a coarse-grained model for water sufficient to compute Kapitza conductance on non-polar surfaces?
VR Ardham and F Leroy, JOURNAL OF CHEMICAL PHYSICS, 147, 151102 (2017).
DOI: 10.1063/1.5003199
Coarse-grained models have increasingly been used in large-scale particle-based simulations. However, due to their lack of degrees of freedom, it is a priori unlikely that they straightforwardly represent thermal properties with the same accuracy as their atomistic counterparts. We take a first step in addressing the impact of liquid coarse-graining on interfacial heat conduction by showing that an atomistic and a coarse-grained model of water may yield similar values of the Kapitza conductance on few-layer graphene with interactions ranging from hydrophobic to mildly hydrophilic. By design the water models employed yield similar liquid layer structures on the graphene surfaces. Moreover, they share common vibration properties close to the surfaces and thus couple with the vibrations of graphene in a similar way. These common properties explain why they yield similar Kapitza conductance values despite their bulk thermal conductivity differing by more than a factor of two. Published by AIP Publishing.
Return to Publications page