Molecular Dynamics Simulations for Loading-Dependent Diffusion of CO2, SO2, CH4, and Their Binary Mixtures in ZIF-10: The Role of Hydrogen Bond
L Li and DS Yang and TR Fisher and Q Qao and Z Yang and N Hu and XS Chen and LL Huang, LANGMUIR, 33, 11543-11553 (2017).
DOI: 10.1021/acs.langmuir.7b01537
The loading-dependent diffusion behavior of CH4, CO2, SO2, and their binary mixtures in ZIF-10 has been investigated in detail by using classical molecular dynamics simulations. Our simulation results demonstrate that the self-diffusion coefficient D-i of CH4 molecules decreases sharply and monotonically with the loading while those of both CO2 and SO2 molecules initially display a slight increase at low uptakes and follow a slow decrease at high uptakes. Accordingly, the interaction energies between CH4 molecules and ZIF-10 remain nearly constant regardless of the loading due to the absence of hydrogen bonds (HBs), while the interaction energies between CO2 (or SO2) and ZIF-10 decease rapidly with the loading, especially at small amounts of gas molecules. Such different loading-dependent diffusion and interaction mechanisms can be attributed to the relevant HB behavior between gas molecules and ZIF-10. At low loadings, both the number and strength of HBs between CO2 (or SO2) molecules and ZIF-10 decrease obviously as the loading increases, which is responsible for the slight increase of their diffusion coefficients. However, at high loadings, their HB strength increases with the loading. Similar loading-dependent phenomena of diffusion, interaction, and HB behavior can be observed for CH4, CO2, and SO2 binary mixtures in ZIF-10, only associated with some HB competition between CO2 and SO2 molecules in the case of the CO2/SO2 mixture.
Return to Publications page