Multiscale Simulation Platform Linking Lithium Ion Battery Electrode Fabrication Process with Performance at the Cell Level

AC Ngandjong and A Rucci and M Maiza and G Shukla and J Vazquez-Arenas and AA Franco, JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 8, 5966-5972 (2017).

DOI: 10.1021/acs.jpclett.7b02647

A novel multiscale modeling platform is proposed to demonstrate the importance of particle assembly during battery electrode fabrication by showing its effect on battery performance. For the first time, a discretized three-dimensional (3D) electrode resulting from the simulation of its fabrication has been incorporated within a 3D continuum performance model. The study used LiNi0.5Co0.2Mn0.3O2 as active material, and the effect of changes of electrode formulation is explored for three cases, namely 85:15, 90:10, and 95:5 ratios between active material and carbon binder domains. Coarse-grained molecular dynamics is used to simulate the electrode fabrication. The resulting electrode mesostructure is characterized in terms of active material surface coverage by the carbon binder domains and porosity. The trends observed are nonintuitive, indicating a high degree of complexity of the system. These structures are subsequently implemented into a 3D continuum model which displays distinct discharge behaviors for the three cases. The study offers a method for developing a coherent theoretical understanding of electrode fabrication that can help optimize battery performance.

Return to Publications page