Anomalous Tensile Detwinning in Twinned Nanowires

GM Cheng and S Yin and TH Chang and G Richter and HJ Gao and Y Zhu, PHYSICAL REVIEW LETTERS, 19, 256101 (2017).

DOI: 10.1103/PhysRevLett.119.256101

In spite of numerous studies on mechanical behaviors of nanowires (NWs) focusing on the surface effect, there is still a general lack of understanding on how the internal microstructure of NWs influences their deformation mechanisms. Here, using quantitative in situ transmission electron microscopy based nanomechanical testing and molecular dynamics simulations, we report a transition of the deformation mechanism from localized dislocation slip to delocalized plasticity via an anomalous tensile detwinning mechanism in bitwinned metallic NWs with a single twin boundary (TB) running parallel to the NW length. The anomalous tensile detwinning starts with the detwinning of a segment of the preexisting TB under no resolved shear stress, followed by the propagation of a pair of newly formed TB and grain boundary leading to a large plastic deformation. An energy-based criterion is proposed to describe this transition of the deformation mechanism, which depends on the volume ratio between the two twin variants and the cross-sectional aspect ratio.

Return to Publications page