Two-Dimensional Al Hydroxide Interaction with Cancerous Cell Membrane Building Units: Complexed Free Energy and Orientation Analysis

AA Tsukanov and SG Psakhie, PHYSICS OF CANCER: INTERDISCIPLINARY PROBLEMS AND CLINICAL APPLICATIONS (PC IPCA), 1882, 020076 (2017).

DOI: 10.1063/1.5001655

The application of hierarchical nanoparticles based on metal hydroxides in biomedicine, including anticancer therapy and medical imaging, is a rapidly developing field. Low-dimensional aluminum oxyhydroxide nanomaterials (AlOOH-NM) are quite promising base to develop hybrid theranostic nano-agents with core-shell architecture, which is determined by AlOOH-NMs physicochemical properties such as: large specific surface area, pH-dependent charge, amphoteric behavior, high surface density of polar groups capable to form non-covalent bonds, low or null cytotoxicity and biocompatibility. Characterization of the system behavior within interface between NM and plasmatic membrane is crucial for the understanding of nano-agent-cell interaction. In the present work the complex in silico study including the free energy estimation and orientation analysis of phosphatidylcholine (POPC) and phosphatidylethanolamine (POPE) lipids interacting with AlOOH nanosheet was conducted to understand the effect of such nanomaterial on cancerous cell plasmatic membrane.

Return to Publications page