A Graphics Processing Unit Implementation of Coulomb Interaction in Molecular Dynamics
PK Jha and R Sknepnek and GI Guerrero-Garcia and MO de la Cruz, JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 6, 3058-3065 (2010).
DOI: 10.1021/ct100365c
We report a GPU implementation in HOOMD Blue of long-range electrostatic interactions based on the orientation-averaged Ewald sum scheme, introduced by Yakub and Ronchi (J. Chem. Phys. 2003, 119, 11556). The performance of the method is compared to an optimized CPU version of the traditional Ewald sum available in LAMMPS, in the molecular dynamics of electrolytes. Our GPU implementation is significantly faster than the CPU implementation of the Ewald method for small to a sizable number of particles (similar to 10(5)). Thermodynamic and structural properties of monovalent and divalent hydrated salts in the bulk are calculated for a wide range of ionic concentrations. An excellent agreement between the two methods was found at the level of electrostatic energy, heat capacity, radial distribution functions, and integrated charge of the electrolytes.
Return to Publications page