The effect of alumina nanoparticles on the thermal properties of PMMA: a molecular dynamics simulation

M Mohammadi and J Davoodi, MOLECULAR SIMULATION, 44, 1304-1311 (2018).

DOI: 10.1080/08927022.2018.1498975

Metal oxides, as one of the most promising flame retardant additives, improve the fire retardant and the thermal stability properties of polymers. In the present study, molecular dynamics (MD) simulations based on the united atom model were applied to study the effect of alumina nanoparticles on the density, thermal conductivity, heat capacity, and thermal diffusivity of isotactic poly(methyl methacrylate) (is-PMMA). Thermal diffusivity of PMMA and PMMA/alumina nanocomposite were investigated through calculating thermal conductivity, density and heat capacity in the range of 300-700K. Heat capacity can be calculated using fluctuations properties of energy. Thermal conductivity was calculated through the nonequilibrium molecular dynamics (NEMD) simulation by Fourier's law approach. Our results show that the addition of alumina nanoparticles decreases the heat capacity and increases the glass transition temperature (T-g), thermal conductivity and thermal diffusivity of the PMMA. Therefore, the addition of alumina nanoparticles to PMMA improves the fire retardancy of the polymer. In addition, we illustrate the links between the intermolecular and bulk properties of PMMA in the presence of the alumina nanoparticles.

Return to Publications page