On the hydration of the phosphocholine headgroup in aqueous solution
F Foglia and MJ Lawrence and CD Lorenz and SE McLain, JOURNAL OF CHEMICAL PHYSICS, 133, 145103 (2010).
DOI: 10.1063/1.3488998
The hydration of the phosphocholine headgroup in 1,2-dipropionyl-sn- glycero-3-phosphocholine (C-3-PC) in solution has been determined by using neutron diffraction enhanced with isotopic substitution in combination with computer simulation techniques. The atomic scale hydration structure around this head group shows that both the -N(CH3)(3) and -CH2 portions of the choline headgroup are strongly associated with water, through a unique hydrogen bonding regime, where specifically a hydrogen bond from the C-H group to water and a strong association between the water oxygen and N+ atom in solution have both been observed. In addition, both PO4 oxygens (P=O) and C=O oxygens are oversaturated when compared to bulk water in that the average number of hydrogen bonds from water to both X=O oxygens is about 2.5 for each group. That water binds strongly to the glycerol groups and is suggestive that water may bind to these groups when phosophotidylcholine is embedded in a membrane bilayer. (c) 2010 American Institute of Physics. doi:10.1063/1.3488998
Return to Publications page