Absence of single critical dose for the amorphization of quartz under ion irradiation

S Zhang and OH Pakarinen and M Backholm and F Djurabekova and K Nordlund and J Keinonen and TS Wang, JOURNAL OF PHYSICS-CONDENSED MATTER, 30, 015403 (2018).

DOI: 10.1088/1361-648X/aa9868

In this work, we first simulated the amorphization of crystalline quartz under 50 keV Na-23 ion irradiation with classical molecular dynamics (MD). We then used binary collision approximation algorithms to simulate the Rutherford backscattering spectrometry in channeling conditions (RBS-C) from these irradiated MD cells, and compared the RBS-C spectra with experiments. The simulated RBS-C results show an agreement with experiments in the evolution of amorphization as a function of dose, showing what appears to be (by this measure) full amorphization at about 2.2 eV.atom(-1). We also applied other analysis methods, such as angular structure factor, Wigner-Seitz, coordination analysis and topological analysis, to analyze the structural evolution of the irradiated MD cells. The results show that the atomic-level structure of the sample keeps evolving after the RBS signal has saturated, until the dose of about 5 eV.atom(-1). The continued evolution of the SiO2 structure makes the definition of what is, on the atomic level, an amorphized quartz ambiguous.

Return to Publications page