Thermal conductivity of ternary III-V semiconductor alloys: The role of mass difference and long-range order
S Mei and I Knezevic, JOURNAL OF APPLIED PHYSICS, 123, 125103 (2018).
DOI: 10.1063/1.5008262
Thermal transport in bulk ternary III-V arsenide (III-As) semiconductor alloys was investigated using equilibrium molecular dynamics with optimized Albe-Tersoff empirical interatomic potentials. Existing potentials for binary AlAs, GaAs, and InAs were optimized to match experimentally obtained acoustic-phonon dispersions and temperature- dependent thermal conductivity. Calculations of thermal transport in ternary III-Vs commonly employ the virtual-crystal approximation (VCA), where the structure is assumed to be a random alloy and all group-III atoms (cations) are treated as if they have an effective weighted- average mass. Here, we showed that it is critical to treat atomic masses explicitly and that the thermal conductivity obtained with explicit atomic masses differs considerably from the value obtained with the average VCA cation mass. The larger the difference between the cation masses, the poorer the VCA prediction for thermal conductivity. The random-alloy assumption in the VCA is also challenged because X-ray diffraction and transmission electron microscopy show order in InGaAs, InAlAs, and GaAlAs epilayers. We calculated thermal conductivity for three common types of order (CuPt-B, CuAu-I, and triple-period-A) and showed that the experimental results for In0.53Ga0.47As and In0.52Al0.48As, which are lattice matched to the InP substrate, can be reproduced in molecular dynamics simulation with 2% and 8% of random disorder, respectively. Based on our results, thermal transport in ternary III-As alloys appears to be governed by the competition between mass-difference scattering, which is much more pronounced than the VCA suggests, and the long-range order that these alloys support. Published by AIP Publishing.
Return to Publications page