Long-time molecular dynamics simulations on massively parallel platforms: A comparison of parallel replica dynamics and parallel trajectory splicing
D Perez and R Huang and AF Voter, JOURNAL OF MATERIALS RESEARCH, 33, 813-822 (2018).
DOI: 10.1557/jmr.2017.456
Molecular dynamics (MD) is one of the most widely used techniques in computational materials science. By providing fully resolved trajectories, it allows for a natural description of static, thermodynamic, and kinetic properties. A major hurdle that has hampered the use of MD is the fact that the timescales that can be directly simulated are very limited, even when using massively parallel computers. In this study, we compare two time-parallelization approaches, parallel replica dynamics (ParRep) and parallel trajectory splicing (ParSplice), that were specifically designed to address this issue for rare event systems by leveraging parallel computing resources. Using simulations of the relaxation of small disordered platinum nanoparticles, a comparative performance analysis of the two methods is presented. The results show that ParSplice can significantly outperform ParRep in the common case where the trajectory remains trapped for a long time within a region of configuration space but makes rapid structural transitions within this region.
Return to Publications page