Investigating the thermal conductivity of concrete/graphene nano composite by a multi-scale modeling approach
M Ahmadi and R Ansari and S Rouhi, INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 32, 1850171 (2018).
DOI: 10.1142/S0217979218501710
In this paper, a multi-scale modeling approach is used to study the effect of adding graphene sheets to concrete matrix on the thermal conductivity of the concrete. By computing the thermal conductivity of the graphene along the armchair and zigzag directions using molecular dynamics (MO) simulations, it is shown that the graphene sheets have orthotropic thermal behavior. Therefore, at the upper scale, in which the finite element (FE) method is used to obtain the thermal conductivity of the concrete/graphene nanocomposites, the graphene sheets are considered as orthotropic continuous sheets. It is shown that the improvement of the concrete thermal conductivity by adding the graphene sheets is directly related to the graphene sheet volume percentage and cross-sectional dimensions.
Return to Publications page