Radiation-induced extreme elastic and inelastic interactions in concentrated solid solutions
R Sachan and MW Ullah and MF Chisholm and J Liu and PF Zhai and D Schauries and P Kluth and C Trautman and HB Bei and WJ Weber and YW Zhang, MATERIALS & DESIGN, 150, 1-8 (2018).
DOI: 10.1016/j.matdes.2018.04.011
One of the biggest challenges in the radiation induced defect science is to understand the complex nature of ionatom interactions under highly extreme conditions. Here, we report the irradiation induced non- equilibriumdefect formation inNiCoCr single phase concentrated solid solution alloy due to (i) the extreme inelastic and (ii) the coupled inelastic and elastic ion-atominteractions. These two conditions are achieved at 5 and 30 mu mpenetration depths along the paths of swift heavy ions (1.542 GeV Bi). In general, the irradiation induced damage consists of interstitial-type dislocation loops and vacancy-type stacking fault tetrahedra (SFT). Near the surface (similar to 5 mu m) where electronic energy loss is dominating (similar to 62.5 keV nm(-1)), the atomicmotion primarily results in the formation of SFT. A noticeable increase of dislocation loop formation is observed at 30 mu m near the maximum energy deposition from elastic interactions (similar to 4.9 keV nm(-1)), as compared to the near surface region (similar to 0.06 keV nm(-1)). Insights on the complex electronic and atomic correlations of extreme energy deposition and dissipation on defect dynamics and structural stability may pave the way for new design principles of radiation-tolerant structural alloys. (C) 2018 Elsevier Ltd. All rights reserved.
Return to Publications page