Role of hydrogen bonding in hysteresis observed in sorption-induced swelling of soft nanoporous polymers
MY Chen and B Coasne and R Guyer and D Derome and J Carmeliet, NATURE COMMUNICATIONS, 9, 3507 (2018).
DOI: 10.1038/s41467-018-05897-9
Hysteresis is observed in sorption-induced swelling in various soft nanoporous polymers. The associated coupling mechanism responsible for the observed sorption-induced swelling and associated hysteresis needs to be unraveled. Here we report a microscopic scenario for the molecular mechanism responsible for hysteresis in sorption-induced swelling in natural polymers such as cellulose using atom-scale simulation; moisture content and swelling exhibit hysteresis upon ad-and desorption but not swelling versus moisture content. Different hydrogen bond networks are examined; cellulose swells to form water-cellulose bonds upon adsorption but these bonds do not break upon desorption at the same chemical potential. These findings, which are supported by mechanical testing and cellulose textural assessment upon sorption, shed light on experimental observations for wood and other related materials.
Return to Publications page