Mechanisms of elementary hydrogen ion-surface interactions during multilayer graphene etching at high surface temperature as a function of flux
DUB Aussems and KM Bal and TW Morgan and MCM van de Sanden and EC Neyts, CARBON, 137, 527-532 (2018).
DOI: 10.1016/j.carbon.2018.05.051
In order to optimize the plasma-synthesis and modification process of carbon nanomaterials for applications such as nanoelectronics and energy storage, a deeper understanding of fundamental hydrogengraphite/ graphene interactions is required. Atomistic simulations by Molecular Dynamics have proven to be indispensable to illuminate these phenomena. However, severe time-scale limitations restrict them to very fast processes such as reflection, while slow thermal processes such as surface diffusion and molecular desorption are commonly inaccessible. In this work, we could however reach these thermal processes for the first time at time-scales and surface temperatures (1000 K) similar to high- flux plasma exposure experiments during the simulation of multilayer graphene etching by 5 eV H ions. This was achieved by applying the Collective Variable-Driven Hyperdynamics biasing technique, which extended the inter-impact time over a range of six orders of magnitude, down to a more realistic ion-flux of 10(23) m(-2)s(-1). The results show that this not only causes a strong shift from predominant ion-to thermally-induced interactions, but also significantly affects the hydrogen uptake and surface evolution. This study thus elucidates H ion- graphite/graphene interaction mechanisms and stresses the importance of including long time-scales in atomistic simulations at high surface temperatures to understand the dynamics of the ion-surface system. (c) 2018 Elsevier Ltd. All rights reserved.
Return to Publications page