Dislocation Interaction and V-Shaped Growth of the Distorted Structure During Nanoindentation of Cu20Ni20Al20Co20Fe20 (high-entropy alloy)-Coated Copper: A Molecular Dynamics Simulation-Based Study
DK Mishra and M Meraj and SK BadJena and S Pal, TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 72, 167-180 (2019).
DOI: 10.1007/s12666-018-1471-0
In this paper, the deformation behavior of Cu20Ni20Al20Co20Fe20 high- entropy alloy-coated single-crystal Cu substrate which undergoes nanoindentation has been investigated under molecular dynamic simulation with embedded-atom method potential. The dynamic structural evolutions under nanoindentation are presented using centrosymmetry parameter analysis, common neighbor analysis and radial distribution function plots. In the initial level of nanoindentation, the interface deformation is greatly confronted by the confined V-shaped growth of the distorted structure. But the sudden discrete dislocation burst account for avalanche break-down in the interface layer, which further get influenced by the evolution of multiple dislocation nodes that is significantly governed by core spreading, extended misfit dislocation generation and relative rotation. In the meanwhile, the subsequent generation of dislocation locks, complicated multiple dislocation loops, dislocation junctions and limited cross-slip in wide stacking faults (SFs) hasten the work hardening and in turn slows down the deformation progress. On the other hand, the intermediate appearance of narrow SFs and slip bands significantly reduces the work hardening rate that increases the optimum fracture strain value of the specimen. Moreover, the overall increase in dislocation density and dislocation length leads to a significant growth in dislocation sources which leads to forest hardening in the later stage.
Return to Publications page