Thermodynamics of sustaining liquid water within rough icephobic surfaces to achieve ultra-low ice adhesion
TY Zhao and PR Jones and NA Patankar, SCIENTIFIC REPORTS, 9, 258 (2019).
DOI: 10.1038/s41598-018-36268-5
The build-up of ice on aircraft, bridges, oil rigs, wind turbines, electrical lines, and other surfaces exposed to cold environments diminishes their safe and effective operation. To engineer robust surfaces that reduce ice adhesion, it is necessary to understand the physics of what makes a surface icephobic ("ice-hating") as well as the relationship between icephobicity and ice adhesion. Here we elucidate the molecular origin of icephobicity based on ice-surface interactions and characterize the correlation between material icephobicity and liquid wettability. This fundamental understanding of icephobic characteristics enables us to propose a robust design for topologically textured, icephobic surfaces. The design identifies the critical confinement length scale to sustain liquid water (as opposed to ice) in between roughness features and can reduce the strength of ice adhesion by over a factor of twenty-seven compared to traditional hydrophobic surfaces. The reduction in ice adhesion is due to the metastability of liquid water; as ambient ice cleaves from the textured surface, liquid water leaves confinement and freezes - a process which takes the system from a local energy minimum to a global energy minimum. This phase transition generates a detachment force that actively propels ambient ice from the surface.
Return to Publications page