Confinement induces helical organization of chromosome-like polymers
Y Jung and BY Ha, SCIENTIFIC REPORTS, 9, 869 (2019).
DOI: 10.1038/s41598-018-37261-8
Helical organization is commonly observed for a variety of biopolymers. Here we study the helical organization of two types of biopolymers, i.e., DNA-like semiflexible and bottle-brush polymers, in a cell-like confined space. A bottle-brush polymer consists of a backbone and side chains emanating from the backbone, resembling a supercoiled bacterial chromosome. Using computer simulations, we calculate 'writhe' distributions of confined biopolymers for a wide range of parameters. Our effort clarifies the conditions under which biopolymers are helically organized. While helical organization is not easily realized for DNA-like biomolecules, cylindrical confinement can induce spiral patterns in a bottle brush, similarly to what was observed with bacterial chromosomes. They also suggest that ringshape bottle brushes have a stronger tendency for helical organization. We discuss how our results can be used to interpret chromosome experiments. For instance, they suggest that experimental resolution has unexpected consequences on writhe measurements (e.g., narrowing of the writhe distribution and kinetic separation of opposite helical states).
Return to Publications page