Vapor sensing and interface properties of reduced graphene oxide- poly(methyl methacrylate) nanocomposite

Z Zabihi and H Araghi and PEDS Rodriguez and A Boujakhrout and R Villalonga, JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 30, 2908-2919 (2019).

DOI: 10.1007/s10854-018-00567-4

Synthesized reduced graphene oxide-poly(methyl methacrylate) (RGO-PMMA) nanocomposites were characterized by differential scanning calorimetry, thermogravimetric analysis, and probed for volatile organic compounds (VOC) sensing. A molecular dynamics simulation is performed to investigate the interaction between PMMA and a graphene surface. The condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS), polymer consistent force-field (PCFF) and consistent valence force-field (CVFF) are used to describe the interaction of the graphene-PMMA. None of the three simulated force fields COMPASS, PCFF, and CVFF exhibits a distinctive behaviour of interaction between graphene and PMMA, but CVFF predicts a higher interaction energy in comparison with the simulated force fields COMPASS and PCFF. Experimentally, the selective response for different VOC has been analysed and the highest response together with the fastest recovery is obtained for tetrahydrofuran. A model is introduced explaining observed features.

Return to Publications page