Highly Switchable Adhesion of N-Doped Graphene Interfaces for Robust Micromanipulation
YY Wan and Y Gao and ZH Xia, ACS APPLIED MATERIALS & INTERFACES, 11, 5544-5553 (2019).
DOI: 10.1021/acsami.8b18793
We demonstrated an N-doped graphene interface with highly switchable adhesion and robust micro manipulation capability triggered by external electric signals. Upon applying a small dc or ac electrical bias, this nanotextured surface can collect environmental moisture to form a large number of water bridges between the graphene and target surface, which lead to a drastic change in adhesive force. Turning on and off the electrical bias can control this graphene interface as a robust micro/nanomanipulator to pick up and drop off various micro/nano-objects for precise assembling, Molecular dynamics simulation reveals that the electrically induced electric double layer and ordered icelike structures at the graphene water interface strengthen the water bridges and consequently enhance force switchability. In addition to the micro-/nanomanipulation, this switchable adhesion may have many technical implications such as climbing robots, sensors, microfluidic devices, and advanced drug delivery.
Return to Publications page