Hydrophilicity and Water Contact Angle on Methylammonium Lead Iodide
C Caddeo and D Marongiu and S Meloni and A Filippetti and F Quochi and M Saba and A Mattoni, ADVANCED MATERIALS INTERFACES, 6, 1801173 (2019).
DOI: 10.1002/admi.201801173
Surface properties are often assessed with measurements of the contact angle of a water drop. The process is however flawed for the very important class of hybrid perovskite materials, extensively employed in solar cells and optoelectronics research, because they are water soluble and their surface degrades during contact angle measurements. While hybrid perovskites are considered to be highly hydrophilic, a contact angle with water of 83 degrees can be measured, as if they were almost hydrophobic. By combining experiments and simulations, the actual value is explained as the result of the interaction of water with degraded superficial layers that form over sub-millisecond time scale at the water/perovskite interface. The models are validated against contact angle measurements for water on a variety of substrates, and are referenced to with the Young-Dupre relation between liquid-solid adhesion and contact angle. Present work reconciles the hydrophilic nature of methylammonium lead iodide with the apparent hydrophobic behavior in contact angle measurements, proposing a methodology for the study of contact angle on evolving substrates.
Return to Publications page