Active learning of uniformly accurate interatomic potentials for materials simulation
LF Zhang and DY Lin and H Wang and R Car and WN E, PHYSICAL REVIEW MATERIALS, 3, 023804 (2019).
DOI: 10.1103/PhysRevMaterials.3.023804
An active learning procedure called deep potential generator (DP-GEN) is proposed for the construction of accurate and transferable machine learning-based models of the potential energy surface (PES) for the molecular modeling of materials. This procedure consists of three main components: exploration, generation of accurate reference data, and training. Application to the sample systems of Al, Mg, and Al-Mg alloys demonstrates that DP-GEN can produce uniformly accurate PES models with a minimal number of reference data.
Return to Publications page