Multiscale Sampling of a Heterogeneous Water/Metal Catalyst Interface using Density Functional Theory and Force-Field Molecular Dynamics
CJ Bodenschatz and XH Zhang and TJ Xie and J Arvay and S Sarupria and RB Getman, JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, e59284 (2019).
DOI: 10.3791/59284
A significant number of heterogeneously-catalyzed chemical processes occur under liquid conditions, but simulating catalyst function under such conditions is challenging when it is necessary to include the solvent molecules. The bond breaking and forming processes modeled in these systems necessitate the use of quantum chemical methods. Since molecules in the liquid phase are under constant thermal motion, simulations must also include configurational sampling. This means that multiple configurations of liquid molecules must be simulated for each catalytic species of interest. The goal of the protocol presented here is to generate and sample trajectories of configurations of liquid water molecules around catalytic species on flat transition metal surfaces in a way that balances chemical accuracy with computational expense. Specifically, force field molecular dynamics (FFMD) simulations are used to generate configurations of liquid molecules that can subsequently be used in quantum mechanics-based methods such as density functional theory or ab initio molecular dynamics. To illustrate this, in this manuscript, the protocol is used for catalytic intermediates that could be involved in the pathway for the decomposition of glycerol (C3H8O3). The structures that are generated using FFMD are modeled in DFT in order to estimate the enthalpies of solvation of the catalytic species and to identify how H2O molecules participate in catalytic decompositions.
Return to Publications page