Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective
SQ Jiang and Y Huang and MZ Li, CHINESE PHYSICS B, 28, 046103 (2019).
DOI: 10.1088/1674-1056/28/4/046103
Classical molecular dynamics simulations have been performed to investigate the structural evolution in deformation-induced rejuvenation in Cu80Zr20 metallic glass. Metallic glasses obtained by different cooling rates can be rejuvenated into the glassy state with almost the same potential energy by compressive deformation. The aging effect in different metallic glasses in cooling process can be completely erased by the deformation-induced rejuvenation. The evolution of cavities has been analyzed to understand the structural evolution in rejuvenation. It is found that as metallic glasses are rejuvenated by mechanical deformation, a lot of cavities are created. The lower the potential energy is, the more the cavities are created. The cavities are mainly created in the regions without cavities or with small cavities populated, indicating that the irreversible rearrangements induced by deformation are accompanied by the creation of cavity. This finding elucidates the underlying structural basis for rejuvenation and aging in metallic glasses from the cavity perspective.
Return to Publications page