Molecular dynamics study of a surfactant-mediated decane-water interface: Effect of molecular architecture of alkyl benzene sulfonate

SS Jang and ST Lin and PK Maiti and M Blanco and WA Goddard and P Shuler and YC Tang, JOURNAL OF PHYSICAL CHEMISTRY B, 108, 12130-12140 (2004).

DOI: 10.1021/jp048773n

The effect of molecular architecture of a surfactant, particularly the attachment position of benzene sulfonate on the hexadecane backbone, at the decane-water interface was investigated using atomistic MD simulations. We consider a series of surfactant isomers in the family of alkyl benzene sulfonates, denoted by m-C16, indicating a benzene sulfonate group attached to the mth carbon in a hexadecane backbone. The equilibrated model systems showed a well-defined interface between the decane and water phases. We find that surfactant 4-C16 has a more compact packing, in terms of the interfacial area and molecular alignment at the interface, than other surfactants simulated in this study. Furthermore, surfactant 4-C16 leads to the most stable interface by having the lowest interface formation energy. The interfacial thickness is the largest in the case of surfactant 4-C16, with the thickness decreasing when the benzene sulfonate is located farther from the attachment position of 4-C16 (the 4th carbon). The interfacial tension profile was calculated along the direction perpendicular to the interface using the Kirkwood-Buff theory. From the comparison of the interfacial tension obtained from the interfacial tension profile, we found that surfactant 4-C16 induces the lowest interfacial tension and that the interfacial tension increases with decreasing interfacial thickness as a function of the attachment position of benzene sulfonate. Such a relationship between the interfacial thickness and interfacial tension is rationalized in terms of the miscibility of the alkyl tail of surfactant m-C16 with decane by comparing the "effective" length of the alkyl tail with the average end-to-end length of decane. Among the surfactants, the effective length of the 4-C16 alkyl tail (9.53 +/- 1.36 Angstrom) was found to be closest to that of decane (9.97 +/- 1.03 Angstrom), which is consistent with the results from the density profile and the interfacial tension profile.

Return to Publications page