Atomistic uniaxial tension tests: investigating various many-body potentials for their ability to produce accurate stress strain curves using molecular dynamics simulations

LS Morrissey and SM Handrigan and S Subedi and S Nakhla, MOLECULAR SIMULATION, 45, 501-508 (2019).

DOI: 10.1080/08927022.2018.1557333

Molecular dynamics simulations, which take place on the atomistic scale, are now being used to predict the influence of atomistic processes on macro-scale mechanical properties. However, there is a lack of clear understanding on which potential should be used when attempting to obtain these properties. Moreover, many MD studies that do test mechanical properties do not actually simulate the macro-scale laboratory tension tests used to obtain them. As such, the purpose of the current study was to evaluate the various types of potentials for their accuracy in predicting the mechanical properties of iron from an atomistic uniaxial tension test at room temperature. Results demonstrated that while EAM and MEAM potentials all under predicted the elastic modulus at room temperature, the Tersoff and ReaxFF potentials were significantly more accurate. Unlike EAM and MEAM, both the Tersoff and ReaxFF potentials are bond order based. Therefore, these results demonstrate the importance of considering bonding between atoms when modelling tensile tests. In addition, the ReaxFF potential also accurately predicted the Poisson's ratio, allowing for complete characterisation of the material's behaviour. Overall, these findings highlight the need to understand the capabilities and limitations of each potential before application to a problem outside of the initial intended use.

Return to Publications page