Pressures Inside a Nano-Porous Medium. The Case of a Single Phase Fluid
O Galteland and D Bedeaux and B Hafskjold and S Kjelstrup, FRONTIERS IN PHYSICS, 7, 60 (2019).
DOI: 10.3389/fphy.2019.00060
We define the pressure of a porous medium in terms of the grand potential and compute its value in a nano-confined or nano-porous medium, meaning a medium where thermodynamic equations need be adjusted for smallness. On the nano-scale, the pressure depends in a crucial way on the size and shape of the pores. According to Hill 1, two pressures are needed to characterize this situation; the integral pressure and the differential pressure. Using Hill's formalism for a nano-porous medium, we derive an expression for the difference between the integral and the differential pressures in a spherical phase a of radius R, (p) over cap (alpha) - p(alpha) = gamma/R. We recover the law of Young-Laplace for the differential pressure difference across the same curved surface. We discuss the definition of a representative volume element for the nano- porous medium and show that the smallest REV is a unit cell in the direction of the pore in the fcc lattice. We also show, for the first time, how the pressure profile through a nano-porous medium can be defined and computed away from equilibrium.
Return to Publications page