Geometrical and Chemical-Dependent Hydrolysis Mechanisms of Silicon Nanomembranes for Biodegradable Electronics
L Wang and Y Gao and FQ Dai and DY Kong and HC Wang and PC Sun and Z Shi and X Sheng and BX Xu and L Yin, ACS APPLIED MATERIALS & INTERFACES, 11, 18013-18023 (2019).
DOI: 10.1021/acsami.9b03546
Biodegradable electronic devices that physically disappear in physiological or environmental solutions are of critical importance for widespread applications in healthcare management and environmental sustainability. The precise modulation of materials and devices dissolution with on-demand operational lifetime, however, remain a key challenge. Silicon nanomembranes (Si NMs) are one of the essential semiconductor components for high-performance biodegradable electronics at the system level. In this work, we discover unusual hydrolysis behaviors of Si NMs that are significantly dependent on the dimensions of devices as well as their surface chemistry. statuses. The experiments show a pronounced increase in hydrolysis rates of p-type Si NMs with larger sizes, and mechanical stirring introduces a significant decrease in dissolution rates. The presence of phosphates and potassium ions in solutions, or lower dopant levels of Si NMs will facilitate the degradation of Si NMs and will also lead to a stronger size-dependent effect. Molecular dynamics simulations are performed to reveal ion adsorption mechanisms of Si NMs under different surface charge statuses and confirm our experimental observations. Through geometrical designs, Si NM-based electrode arrays with tunable dissolution lifetime are formed, and their electrochemical properties are analyzed in vitro. These results offer new controlling strategies to modulate the operational time frames of Si NMs through geometrical design and surface chemistry modification and provide crucial fundamental understandings for engineering high-performance biodegradable electronics.
Return to Publications page