Stoichiometry deviation in amorphous zirconium dioxide
MJD Rushton and I Ipatova and LJ Evitts and WE Lee and SC Middleburgh, RSC ADVANCES, 9, 16320-16327 (2019).
DOI: 10.1039/c9ra01865d
Amorphous zirconia (a-ZrO2) has been simulated using a synergistic combination of state-of-the-art methods: employing reverse Monte-Carlo, molecular dynamics and density functional theory together. This combination has enabled the complex chemistry of the amorphous system to be efficiently investigated. Notably, the a-ZrO2 system was observed to accommodate excess oxygen readily through the formation of neutral peroxide (O2 2 ) defects -a result that has implications not only in the a-ZrO2 system, but also in other systems employing network formers, intermediates and modifiers. The structure of the a-ZrO2 system was also determined to have edge-sharing characteristics similar to structures reported in the amorphous TeO2 system and other chalcogenide-containing glasses.
Return to Publications page