Transition of Deformation Mechanisms in Single-Crystalline Metallic Nanowires
S Yin and GM Cheng and G Richter and HJ Gao and Y Zhu, ACS NANO, 13, 9082-9090 (2019).
DOI: 10.1021/acsnano.9b03311
Twinning and dislocation slip are two competitive deformation mechanisms in face-centered cubic (FCC) metals. For FCC metallic nanowires (NWs), the competition between these mechanisms was found to depend on loading direction and material properties. Here, using in situ transmission electron microscopy tensile tests and molecular dynamics simulations, we report an additional factor, cross-sectional shape, that can affect the competition between the deformation mechanisms in single-crystalline FCC metallic NWs. For a truncated rhombic cross-section, the extent of truncation determines the competition. Specifically, a transition from twinning to localized dislocation slip occurs with increasing extent of truncation. Theoretical and simulation results indicate that the energy barriers for twinning and dislocation slip depend on the cross-sectional shape of the NW. The energy barrier for twinning is proportional to the change of surface energy associated with the twinning. Thus, the transition of deformation modes can be attributed to the change of surface energy as a function of the cross-sectional shape.
Return to Publications page