Microstructural ordering of nanofibers in flow-directed assembly
EL Gao and SJ Wang and CH Duan and ZP Xu, SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 62, 1545-1554 (2019).
DOI: 10.1007/s11431-018-9421-5
Fabrication of highly ordered and dense nanofibers assemblies is of key importance for high-performance and multi-functional material and device applications. In this work, we design an experimental approach in silico, where shear flow and solvent evaporation are applied to tune the alignment, overlap of nanofibers, and density of the assemblies. Microscopic dynamics of the process are probed by dissipative particle dynamics simulations, where hydrodynamic and thermal fluctuation effects are fully modeled. We find that microstructural ordering of the assembled nanofibers can be established within a specific range of the Peclet numbers and evaporation rates, while the properties of nanofibers and their interaction are crucial for the local stacking order. The underlying mechanisms are elucidated by considering the competition between hydrodynamic coupling and thermal fluctuation. Based on these understandings, a practical design of flow channels for nanofiber assembly with promising mechanical performance is outlined.
Return to Publications page