Aggregation of polymer-grafted nanoparticles in good solvents: A hierarchical modeling method
LS Cheng and DP Cao, JOURNAL OF CHEMICAL PHYSICS, 135, 124703 (2011).
DOI: 10.1063/1.3638176
Brownian dynamics simulations are carried out to study the aggregation behavior of polymer-grafted nanoparticles (NPs) in good solvents by using the coarse-grained model derived from the all-atom force field, according to the hierarchical modeling strategy, and here PEG-grafted gold nanoparticles (GNPs) were taken as an example. Generally, grafting PEG to the surface of GNPs is to protect them from aggregation in the solution. However, our results reveal that PEG-grafted GNPs may also aggregate when concentration increases. Our simulations indicate that there exists a critical aggregating concentration (CAC), beyond which the PEG-grafted GNPs will aggregate. We further check the effects of grafting density and the length of grafted chains on the aggregation behavior of the grafted GNPs, and find that there exists an optimized length of grafted chain, at which the system has the maximal CAC. Furthermore, the aggregate size of self-assembled mesostructures formed by the grafted GNPs increases with the concentration. Interestingly, it is observed that the aggregation favors to form linear gold nanowires rather than compact gold nanoclusters, and the corresponding mechanism is also addressed. It is expected that this work would provide useful information for the fabrication of metal nanowires and the surface modification of metal nanoparticles. (C) 2011 American Institute of Physics. doi:10.1063/1.3638176
Return to Publications page