ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals
HS Huang and LQ Ai and ACT van Duin and M Chen and YJ Lu, JOURNAL OF CHEMICAL PHYSICS, 151, 094503 (2019).
DOI: 10.1063/1.5112794
We develop a ReaxFF reactive force field used for the molecular dynamics simulations of thermophysical properties of liquid Cu and Zr metals. The ReaxFF parameters are optimized by fitting to the first-principles density-functional calculations on the equations of state for bulk crystal structures and surface energies. To validate the force field, we compare the ReaxFF results with those from experiments and embedded- atom-method (EAM) potentials. We demonstrate that the present ReaxFF force field well represents structural characteristics and diffusion behaviors of elemental Cu and Zr up to high-temperature liquid regions. It reasonably reproduces the thermodynamic processes associated with crystal-liquid interface. In particular, the equilibrium melting temperatures show better agreement with experimental measurements than the results from EAM potentials. The ReaxFF reactive force field method exhibits a good transferability to the nonreactive processes of liquid systems.
Return to Publications page