A comparison of different continuum approaches in modeling mixed-type dislocations in Al
SZ Xu and L Smith and JR Mianroodi and A Hunter and B Svendsen and IJ Beyerlein, MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 27, 074004 (2019).
DOI: 10.1088/1361-651X/ab2d16
Mixed-type dislocations are prevalent in metals and play an important role in their plastic deformation. Key characteristics of mixed-type dislocations cannot simply be extrapolated from those of dislocations with pure edge or pure screw characters. However, mixed-type dislocations traditionally received disproportionately less attention in the modeling and simulation community. In this work, we explore core structures of mixed-type dislocations in Al using three continuum approaches, namely, the phase-field dislocation dynamics (PFDD) method, the atomistic phase-field microelasticity (APFM) method, and the concurrent atomistic-continuum (CAC) method. Results are bench-marked against molecular statics. We advance the PFDD and APFM methods in several aspects such that they can better describe the dislocation core structure. In particular, in these two approaches, the gradient energy coefficients for mixed-type dislocations are determined based on those for pure-type ones using a trigonometric interpolation scheme, which is shown to provide better prediction than a linear interpolation scheme. The dependence of the in-slip-plane spatial numerical resolution in PFDD and CAC is also quantified.
Return to Publications page