Effect of Ambient Chemistry on Friction at the Basal Plane of Graphite
A Khajeh and Z Chen and SH Kim and A Martini, ACS APPLIED MATERIALS & INTERFACES, 11, 40800-40807 (2019).
DOI: 10.1021/acsami.9b13261
Graphite is widely used as a solid lubricant due to its layered structure, which enables ultralow friction. However, the lubricity of graphite is affected by ambient conditions and previous studies have shown a sharp contrast between frictional behavior in vacuum or dry environments compared to humid air. Here, we studied the effect of organic gaseous species in the environment, specifically comparing the adsorption of phenol and pentanol vapor. Atomic force microscopy experiments and reactive molecular dynamics simulations showed that friction was larger with phenol than with pentanol. The simulation results were analyzed to test multiple hypotheses to explain the friction difference, and it was found that mechanically driven chemical bonding between the tip and phenol molecules plays a critical role. Bonding increases the number of phenol molecules in the contact, which increases the adhesion as well as the number of atoms in registry with the topmost graphene layer acting as a pinning site to resist sliding. The findings of this research provide insight into how the chemistry of the operating environment can affect the frictional behavior of graphite and layered materials more generally.
Return to Publications page