Confinement effects on the dynamics of a rigid particle in a nanochannel
A Gubbiotti and M Chinappi and CM Casciola, PHYSICAL REVIEW E, 100, 053307 (2019).
DOI: 10.1103/PhysRevE.100.053307
The transport of nanoparticles in confined geometries plays a crucial role in several technological applications ranging from nanopore sensors to filtration membranes. Here we describe a Brownian approach to simulate the motion of a rigid-body nanoparticle of an arbitrary shape under confinement. A quaternion formulation is used for the nanoparticle orientation, and the corresponding overdamped Langevin equation, completed by the proper fluctuation-dissipation relation, is derived. The hydrodynamic mobility matrix is obtained via dissipative particle dynamics simulation equipped with a new method for enforcing the no-slip boundary condition for curved moving solid-liquid interfaces. As an application, we analyzed the motion of a nanoparticle in a cylindrical channel under the action of external fields. We show that both axial effective diffusion and rotational diffusion decrease with confinement.
Return to Publications page