Hexagonal Superalignment of Nano-Objects with Tunable Separation in a Dilute and Spacer-Free Solution
CY Su and Q Lyu and DY Kang and ZH Yang and CH Lam and YH Chen and SC Lo and CC Hua and LC Lin, PHYSICAL REVIEW LETTERS, 123, 238002 (2019).
DOI: 10.1103/PhysRevLett.123.238002
Manipulating building-block nanomaterials to form an ordered superstructure in a dilute and spacer-free solution phase challenges the existing 5-nm node lithography and nanorobotics. The cooperative nature of nanocrystals, polymers, and cells can lead to superarrays or colloidal crystals. For known highly ordered systems, the characteristic length of materials, defined as the shortest dimension of objects, is generally larger than their separations. A spacer (small-molecule surfactant or polymer) is typically required to diminish short range van der Waals attraction, which results in a glassy or liquid state. Herein we propose a new concept of achieving highly ordered nano-objects in a dilute and spacer-free system via the synergistic effects of excellent solvation and appropriate constraints on rotational motion. As a proof of concept, this study demonstrates that aluminosilicate nanotubes (AlSiNTs) suspended in water under dilute conditions (e.g., 1.0 wt%) can spontaneously form hexagonal arrays with an intertubular distance as large as tens of nanometers. The separation distance of the ordered superstructure is also tunable via controlling the concentration and length of nanotubes. These superaligned structures are probed using small-angle x-ray scattering and cryo-TEM characterizations, with underlying mechanisms investigated at an atomic level using molecular dynamics simulations. The concept and discovery of this work can open up opportunities to a variety of applications including visible-UV photonics and nanolithography, and may be generalizable to other nano- object systems that fulfill similar requirements.
Return to Publications page