Segregation of xenon to dislocations and grain boundaries in uranium dioxide
PV Nerikar and DC Parfitt and LAC Trujillo and DA Andersson and C Unal and SB Sinnott and RW Grimes and BP Uberuaga and CR Stanek, PHYSICAL REVIEW B, 84, 174105 (2011).
DOI: 10.1103/PhysRevB.84.174105
It is well known that Xe, being insoluble in UO(2), segregates to dislocations and grain boundaries (GBs), where bubbles may form resulting in fuel swelling. Less well known is how sensitive this segregation is to the structure of the dislocation or GB. In this work we employ pair potential calculations to examine Xe segregation to dislocations (edge and screw) and several representative grain boundaries (Sigma 5 tilt, Sigma 5 twist, and random). Our calculations predict that the segregation trend depends significantly on the type of dislocation or GB. In particular we find that Xe prefers to segregate strongly to the random boundary as compared to the other two boundaries and to the screw dislocation rather than the edge. Furthermore, we observe that neither the volumetric strain nor the electrostatic potential of a site can be used to predict its segregation characteristics. These differences in segregation characteristics are expected to have important consequences for the retention and release of Xe in nuclear fuels. Finally, our results offer general insights into how atomic structure of extended defects influence species segregation.
Return to Publications page