Atomic simulation of AlGaN film deposition on AlN template

LB Zhang and L Li and YF Wang and YL Suo and S Liu and ZY Gan, MOLECULAR PHYSICS, 118 (2020).

DOI: 10.1080/00268976.2019.1702728

In this article, we study the deposition of AlGaN film on AlN template by molecular dynamics (MD) simulations. The effects of growth temperature and film thickness on the dislocation of deposited AlGaN film are simulated and studied. The atomic structure of deposited AlGaN film is also investigated. We find that the dislocations usually occur at the interface between AlN template and AlGaN film and then extend towards the growth direction. The dislocation density decreases with the increase of AlGaN film thickness, which indicates that increasing the thickness of deposited AlGaN film to a certain extent is beneficial to reducing dislocation. In addition, increasing the growth temperature can also effectively reduce the dislocation in deposited AlGaN film. Furthermore, the crystallinity of deposited AlGaN film could be improved by increasing the growth temperature. This is consistent with the dislocation discussion. The mobility of adatoms increases as the growth temperature increases. So it is easier for adatoms to find their ideal lattice points at higher temperature. Thus the dislocation and other defects can be effectively reduced and the crystal quality of deposited AlGaN film could be improved.

Return to Publications page