Unsteady flow, clusters, and bands in a model shear-thickening fluid
S Saw and M Grob and A Zippelius and C Heussinger, PHYSICAL REVIEW E, 101, 012602 (2020).
DOI: 10.1103/PhysRevE.101.012602
We analyze the flow curves of a two-dimensional assembly of granular particles which are interacting via frictional contact forces. For packing fractions slightly below jamming, the fluid undergoes a large scale instability, implying a range of stress and strain rates where no stationary flow can exist. Whereas small systems were shown previously to exhibit hysteretic jumps between the low and high stress branches, large systems exhibit continuous shear thickening arising from averaging unsteady, spatially heterogeneous flows. The observed large scale patterns as well as their dynamics are found to depend on strain rate: At the lower end of the unstable region, force chains merge to form giant bands that span the system in the compressional direction and propagate in the dilational direction. At the upper end, we observe large scale clusters which extend along the dilational direction and propagate along the compressional direction. Both patterns, bands and clusters, come in with infinite correlation length similar to the sudden onset of system-spanning plugs in impact experiments.
Return to Publications page