Effects of Strontium incorporation to Mg-Zn-Ca biodegradable bulk metallic glass investigated by molecular dynamics simulation and density functional theory calculation
SJ Sun and SP Ju and CC Yang and KC Chang and IJ Lee, SCIENTIFIC REPORTS, 10, 2515 (2020).
DOI: 10.1038/s41598-020-58789-8
Molecular dynamics (MD) simulation and density functional theory (DFT) calculations were used to predict the material properties and explore the improvement on the surface corrosion resistance for the Mg66Zn30Ca3Sr1 bulk metallic glass (BMG). The Mg66Zn30Ca4 BMG was also investigated to realize the influence of the addition of Sr element on the material behaviors of Mg66Zn30Ca4. The Mg-Zn-Ca-Sr parameters of the next nearest-neighbor modified embedded atom method (2NN MEAM) potential were first determined by the guaranteed convergence particle swarm optimization (GCPSO) method based on the reference data from the density functional theory (DFT) calculation. Besides, using the 2NN MEAM parameters of the Mg-Zn-Ca-Sr system, the structures of Mg66Zn30Ca4 and Mg66Zn30Ca3Sr1 were predicted by the simulated-annealing basin-hopping (SABH) method. The local atomic arrangements of the predicted BMG structures are almost the same as those measured in some related experiments from a comparison with the calculated and experimental X-ray diffraction (XRD) profiles. Furthermore, the HA index analysis shows that the fractions of icosahedra-like local structures are about 72.20% and 72.73% for Mg66Zn30Ca4 and Mg66Zn30Ca3Sr1, respectively, indicating that these two BMG structures are entirely amorphous. The uniaxial tensile MD simulation was conducted to obtain the stress-strain relationship as well as the related mechanical properties of Mg66Zn30Ca4 and Mg66Zn30Ca3Sr1. Consequently, the predictedYoung's moduli of both BMGs are about 46.4 GPa, which are very close to the experimental values of 48.8 +/- 0.2 and 49.1 +/- 0.1 GPa for Mg66Zn30Ca4 and Mg66Zn30Ca3Sr1, respectively. However, the predicted strengths of Mg66Zn30Ca4 and Mg66Zn30Ca3Sr1 are about 850 and 900 MPa, both are slightly higher than the measured experimental values about 747 +/- 22 and 848 +/- 21 MPa for Mg66Zn30Ca4 and Mg66Zn30Ca3Sr1. Regarding the thermal properties, the predicted melting temperature of Mg66Zn30Ca3Sr1 by the square displacement (SD) profile is about 620 K, which is very close to the experimental melting temperature of about 613 K. The self-diffusion coefficients of Mg, Zn, Ca, and Sr elements were also calculated for temperatures near their melting points by means of the Einstein equation. The methodology can determine the diffusion barriers for different elements by utilizing these diffusion coefficients resulting in a fact that the diffusion barriers of Ca and Sr elements of Mg66Zn30Ca3Sr1 are relatively high. For the electronic properties predicted by the DFT calculation, the projected density of states (PDOS) profiles of surface Mg, Zn, Ca, and Sr elements clearly show that the addition of Sr into Mg66Zn30Ca4 effectively reduces the s and p orbital states of surface Mg and Zn elements near the Fermi level, particularly the p orbits, which suppresses the electron transfer as well as increases the surface corrosion resistance of Mg66Zn30Ca4. Consequently, this study has provided excellent 2NN MEAM parameters for the Mg, Zn, Ca, and Sr system by the GCPSO method to predict real BMG structures as well as by means of the DFT calculation to explore the electronic properties. Eventually, through our developed numerical processes the material properties of BMGs with different compositions can be predicted accurately for the new BMG design.
Return to Publications page