Surface Energies and Structure of Salt-Brine Interfaces
JM Rimsza and KL Kuhlman, LANGMUIR, 36, 2482-2491 (2020).
DOI: 10.1021/acs.langmuir.9b03172
Permeability of salt formations is controlled by the equilibrium between the salt-brine and salt-salt interfaces described by the dihedral angle, which can change with the composition of the intergranular brine. Here, classical molecular dynamics (MD) simulations were used to investigate the structure and properties of the salt-brine interface to provide insight into the stability of salt systems. Mixed NaCl-KCl brines were investigated to explore differences in ion size on the surface energy and interface structure. Nonlinearity was noted in the salt-brine surface energy with increasing KCl concentration, and the addition of 10% KCl increased surface energies by 2-3 times (5.0 M systems). Size differences in Na+ and K+ ions altered the packing of dissolved ions and water molecules at the interface, impacting the surface energy. Additionally, ions at the interface had lower numbers of coordinating water molecules than those in the bulk and increased hydration for ions in systems with 100% NaCl or 100% KCl brines. Ultimately, small changes in brine composition away from pure NaCl altered the structure of the salt-brine interface, impacting the dihedral angle and the predicted equilibrium permeability of salt formations.
Return to Publications page