Translocation of links through a pore: effects of link complexity and size
M Caraglio and E Orlandini and SG Whittington, JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 043203 (2020).
DOI: 10.1088/1742-5468/ab7a20
We have used Langevin dynamics to simulate the forced translocation of linked polymer rings through a narrow pore. For fixed size (i.e. fixed number of monomers) the translocation time depends on the link type and on whether the rings are knotted or unknotted. For links with two unknotted rings the crossings between the rings can slow down the translocation and are responsible for a delay as the crossings pass through the pore. The results fall on a set of relatively smooth curves for different link families with the translocation time not always increasing with crossing number within the same family. When one ring is knotted the results depend on whether the link is prime or composite and, for the composite case, they depend on whether the knotted or unknotted ring enters the pore first. We find a similar situation for 3-component links where the results depend on whether the link is prime or composite. These results contribute to our understanding of how the entanglement complexity between filaments impacts their translocation dynamics and should be useful for extending nanopore-sensing techniques to probe the topological properties of these systems.
Return to Publications page