Molecular dynamics simulation of the interaction of water and humic acid in the adsorption of polycyclic aromatic hydrocarbons
N Zhao and F Ju and H Pan and ZH Tang and H Ling, ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 27, 25754-25765 (2020).
DOI: 10.1007/s11356-020-09018-2
Humic acid (HA) and water play an important role in polycyclic aromatic hydrocarbons (PAHs) adsorption and biodegradation in soil. In this work, molecular dynamics (MD) and electrostatic potential surfaces (EPSs) simulations are conducted to research the contribution of quartz surface, leonardite humic acid (LHA), and water to PAH adsorption. The adsorption energies between PAHs and LHA are much higher than that between PAHs and quartz. Simulation shows that the hydroxyl and carboxyl groups' attraction by LHA is the main adsorption force between PAHs and LHA. The pi-pi interaction between PAHs and LHA also contributes to the adsorption process. In addition, the mobility of water on quartz surface is much higher than that of LHA. Water should be regarded as an adsorbate in the system as well as PAHs. However, the presence of water has a remarkable negative effect on the adsorption of PAHs on LHA and quartz. The bridging effect of water could only enhance the stability of the aggregation system. The adsorption contribution of quartz and LHA to PAHs in the soil model tends to 0 if the water layer reaches 2.0 nm.
Return to Publications page