Efficiency of Electropumping in Nanochannels
D Ostler and SK Kannam and F Frascoli and PJ Daivis and BD Todd, NANO LETTERS, 20, 3396-3402 (2020).
DOI: 10.1021/acs.nanolett.0c00308
Electropumping has been shown to be an effective means of inducing a net positive flow in fluids confined within planar nanochannels and carbon nanotubes. In this Letter, we investigate the efficiency of electropumping relative to Couette and Poiseuille flows. We apply a spatially uniform rotating electric field to a fluid confined in a functionalized nanochannel that couples the water's permanent dipole moment resulting in a net positive flow. We then induce a net positive flow in nanochannels for Couette and Poiseuille flows, matching volume flow rates to allow a direct comparison of average power dissipation per unit volume between all flow types. We show that while electropumping is less efficient than Couette flow, it is 4 orders of magnitude more efficient than Poiseuille flow. This suggests that, rather than being a mere novelty, electropumping is a far more energetically efficient means of transporting water compared to conventional pressure driven pumping.
Return to Publications page