A powder-metallurgy-based strategy toward three-dimensional graphene- like network for reinforcing copper matrix composites

X Zhang and YX Xu and MC Wang and EZ Liu and NQ Zhao and CS Shi and D Lin and FL Zhu and CN He, NATURE COMMUNICATIONS, 11, 2775 (2020).

DOI: 10.1038/s41467-020-16490-4

Three-dimensional graphene network is a promising structure for improving both the mechanical properties and functional capabilities of reinforced polymer and ceramic matrix composites. However, direct application in a metal matrix remains difficult due to the reason that wetting is usually unfavorable in the carbon/metal system. Here we report a powder-metallurgy based strategy to construct a three- dimensional continuous graphene network architecture in a copper matrix through thermal-stress-induced welding between graphene-like nanosheets grown on the surface of copper powders. The interpenetrating structural feature of the as-obtained composites not only promotes the interfacial shear stress to a high level and thus results in significantly enhanced load transfer strengthening and crack-bridging toughening simultaneously, but also constructs additional three-dimensional hyperchannels for electrical and thermal conductivity. Our approach offers a general way for manufacturing metal matrix composites with high overall performance. Graphene networks have been used to reinforce polymer and ceramic composites, but connecting graphene into a three dimensional network in a metal matrix is challenging. Here the authors use a powder-metallurgy-based strategy to construct a three-dimensional graphene network reinforced copper matrix composite.

Return to Publications page