High Adsorption of Benzoic Acid on Single Walled Carbon Nanotube Bundles
SF Li and T De Silva and I Arsano and D Gallaba and R Karunanithy and M Wasala and XF Zhang and P Sivakumar and A Migone and M Tsige and XM Ma and S Talapatra, SCIENTIFIC REPORTS, 10, 10013 (2020).
DOI: 10.1038/s41598-020-66871-4
Removal of harmful chemicals from water is paramount to environmental cleanliness and safety. As such, need for materials that will serve this purpose is in the forefront of environmental research that pertains to water purification. Here we show that bundles of single walled carbon nanotubes (SWNTs), synthesized by direct thermal decomposition of ferrocene (Fe(C5H5)(2)), can remove emerging contaminants like benzoic acid from water with high efficiencies. Experimental adsorption isotherm studies indicate that the sorption capacity of benzoic acid on these carbon nanotubes (CNTs) can be as high as 375mg/g, which is significantly higher (in some cases an order of magnitude) than those reported previously for other adsorbents of benzoic acid such as activated carbon cloth, modified bentonite and commercially available graphitized multiwall carbon nanotubes (MWNTs). Our Molecular Dynamics (MD) simulation studies of experimental scenarios provided major insights related to this process of adsorption. The MD simulations indicate that, high binding energy sites present in SWNT bundles are majorly responsible for their enhanced adsorptive behavior compared to isolated MWNTs. These findings indicate that SWNT materials can be developed as scalable materials for efficient removal of environmental contaminants as well as for other sorption-based applications.
Return to Publications page