A computational study of the behavior of colloidal gel networks at low volume fraction
H Hatami-Marbini, JOURNAL OF PHYSICS-CONDENSED MATTER, 32, 275101 (2020).
DOI: 10.1088/1361-648X/ab76ab
Colloidal gel networks appear in different scientific and industrial applications because of their unique properties. Molecular dynamics simulations could reveal the relation between molecular level and macroscopic properties of these systems. Nevertheless, the predictions of numerical simulations might depend on the specific form and parameters of interaction potentials. In this paper, a new effective interaction potential is used for characterizing the mechanical behavior of low volume fraction colloidal gels under large shear deformation. The findings are compared with those obtained from other available forms of interaction potentials in order to determine gel characteristics that are interaction potential independent. Furthermore, the macroscopic stress-strain behavior is discussed in terms of the behavior of different terms of the proposed interaction potential. The correlation between the stretch of interparticle bonds and their alignment in the direction of the maximum principal stress is also computed in order to provide microscopic explanations for the initial strain softening behavior. It is concluded that, in addition to topology, local mechanical interactions between colloidal particles are important in defining the mechanical response of soft gels.
Return to Publications page